

RSDT Fuel Cell Electrodes

Joseph D. Amato¹, Justin M. Roller², Radenka Maric²

¹University of Minnesota - Twin Cities, Department of Chemical Engineering and Materials Science

²University of Connecticut Department of Chemical and Biomolecular Engineering

Proton OnSite

The Technology:

Reactive Spray Deposition Technology (RSDT)

- Combines both catalyst production and electrode formation into single step process
- Vapor based deposition allows for various microstructures by tuning input parameters
- Platinum nanoparticles deposited onto substrate

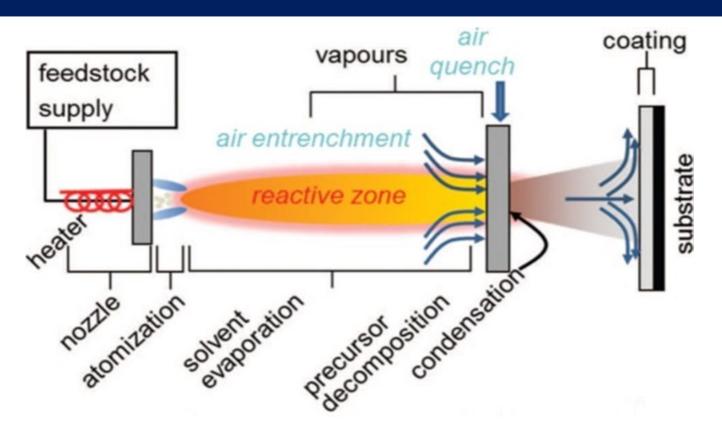


Figure 1: Schematic of the RSDT process used to coat substrates with platinum nanoparticles

The Market:

Figure 2:
A 400 kW
fuel cell
station
installed
on UConn
Depot
campus

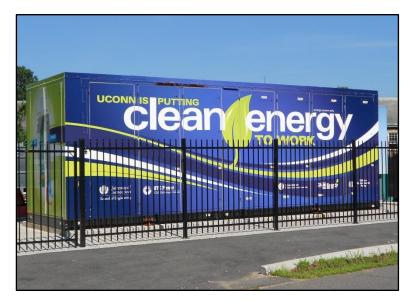


Figure 3:
Fueling a H₂
powered, fuel
cell Toyota
Highlander
prototype at
Proton OnSite

Energy Production and Distribution

- High demand: industrial, residential, transportation, electricity
- Utilization of fuel cell energy to meet the increased demand
- Clean, renewable, efficient source

Objective: to reduce the platinum group metal loading for anodes and cathodes used in PEM water electrolysis by 20x and the power consumption of manufacturing MEAs by 50%

Methods:

- Precursor solution (Pt II acetylacetonate)
 prepared inside high pressure vessel
- O₂ and CH₄ used as pilot gases for transport, flow through atomizing nozzle
- RSDT method: inexpensive solutions, roll to roll process, high degree of control

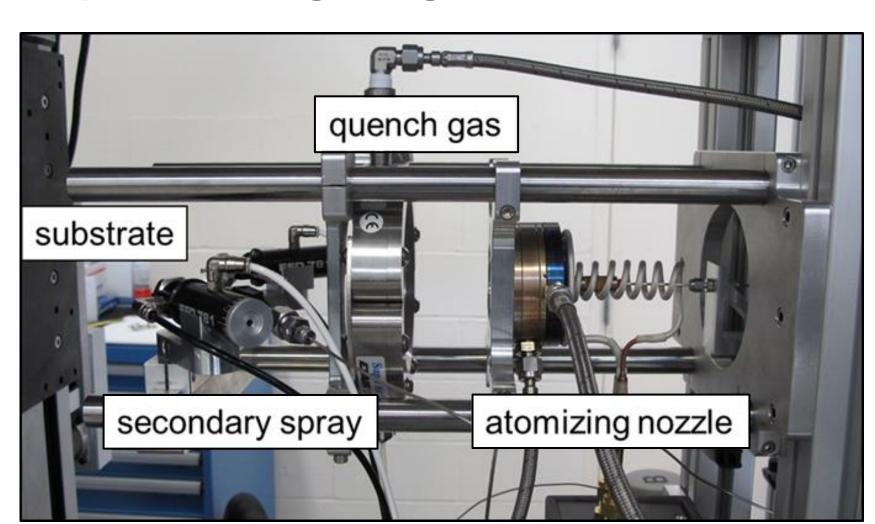
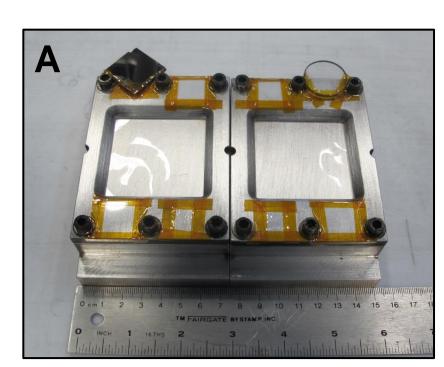



Figure 4: Photo of RSDT open atmosphere machine. Platinum nanoparticles exit atomizing nozzle (right) and are deposited onto substrate material (left)

Results:

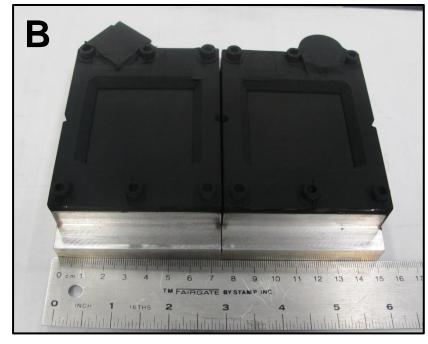


Figure 5: Substrate materials seen (A) before and (B) after two hour deposition

UConn Electrode Testing Summary

2.75

2.5

2.5

2.5

2.5

--143-L

--143-R

--145-L

--178-R

--GDE Baseline

Current Density (mA/cm²)

Figure 6: Plot cell potential vs. current density for several RSDT electrodes. Proton GDE (gas diffusion electrode) baseline shows industry standard

Table 1: Experimental data for RSDT and Proton GDE baseline electrodes. Power consumption and loading significantly lower for the RSDT electrodes

Sample #	Average Potential (V)	Loading (mg/cm ²)	Power (kW)
143-L	2.12	0.082	0.75
143-R	2.08	0.165	1.46
145-L	2.31	0.106	1.23
178-R	1.95	0.134	1.84
Baseline	2.18	3.078	3.89

Conclusions:

- Manufacturing electrodes using RSDT reduces platinum group metal loading by more than 20x
- Power consumption is reduced by 50% when using RSDT to produce electrodes
- RSDT reduces cost and fabrication processes

Acknowledgements:

- National Science Foundation Research Experience for Undergraduates Program
- Center for Clean Energy Engineering

Student Contact: amat0028@umn.edu Advisor Contact: maric@engr.uconn.edu